Hyperbolic geometry and the Hillam-Thron theorem

نویسنده

  • IAN SHORT
چکیده

Every open ball within R∞ has an associated hyperbolic metric and Möbius transformations act as hyperbolic isometries from one ball to another. The Hillam-Thron Theorem is concerned with images of balls under Möbius transformation, yet existing proofs of the theorem do not make use of hyperbolic geometry. We exploit hyperbolic geometry in proving a generalisation of the Hillam-Thron Theorem and examine the precise configurations of points and balls that arise in that theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conical Limit Sets and Continued Fractions

Inspired by questions of convergence in continued fraction theory, Erdős, Piranian and Thron studied the possible sets of divergence for arbitrary sequences of Möbius maps acting on the Riemann sphere, S. By identifying S with the boundary of three-dimensional hyperbolic space, H, we show that these sets of divergence are precisely the sets that arise as conical limit sets of subsets of H. Usin...

متن کامل

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

A New Proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry

In this study, we present a proof of the Menelaus theorem for quadrilaterals in hyperbolic geometry, and a proof for the transversal theorem for triangles.

متن کامل

The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry

In this note, we present the hyperbolic Menelaus theorem in the Poincaré disc of hyperbolic geometry. 2000 Mathematical Subject Classi…cation: 30F45, 20N99, 51B10, 51M10 Keywords and phrases: hyperbolic geometry, hyperbolic triangle, gyrovector 1. Introduction Hyperbolic Geometry appeared in the …rst half of the 19 century as an attempt to understand Euclid’s axiomatic basis of Geometry. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011